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ABSTRACT

Let = (X1 , ... , Xn) have a density g(x, W which is decreasing

in transposition, where A = (Al, ... , An). Suppose one wishes to se-

lect a subset of (1. ... , n) containing the subscripts associated with

the largest values of the Ai's. Let S(x) be a permutation invariant

selection rule which always selects a subset associated with the largest

values of the X Is. Let A = ci(1),...,i(k)} c {l,...,n} and

B = {j(l),...,j(k))c (l...,n) be such that Ai(s) A J(s) =

Then the following three inequalities are proved. (ICI denotes the

number of elements in C. Cc denotes the complement of C.)

(i) P AIA n S(X)I a m) a P(IB n S()j a m) for every m c R,

(ii) PA(A - S(D) 2 P (B = S(X)), and (iii) P CAC n s()I S u)

P(IBC n S(X)I < m) for every m e R. These generalized monotonicity

properties are derived using a unified approach. The results apply to

selection rules proposed under several formulations of the selection

problem.
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I. Introduction. In this paper we study some monotonicity pro-

perties of ranking and selection rules. Let (XI, ... , Xn) be a

random observation with distribution F(Q; ), where the unknown para-

mter vector A (Ai, ... , kn) C Rn. The general goal of a selec-

tion problem is to decide which coordinates of A are the largest or

which are larger than a value X0 (possibly unknown). This is accom-

plished by selecting S(z) c (1, ... , n), depending on E a 1. and assert-

ing that the largest parameters are in {.: i c S() }. The subset S(Q)

may be of fixed or random size depending on the formulation of the se-

lection problem under consideration. See, for example, Bechhofer (1954),

Gupta and Sobel (1958), Lehmann (1961), Gupta (1965) and Tong (1969)

for five formulations. In this paper, we will not be concerned with a

specific formulation of the selection problem or with rules which satis-

fy a specific probability requirement (sometimes called a P*-condition).

For our purposes a (nonrandomized) selection rule S(x) is any mapping

from the sample space X of X into the set of subsets of (1, ... , n).

The selection rules described in the above five formulations all satisfy

this definition and the results derived herein apply to these rules.

Gupta (1965) calls a selection rule monotone if X . )L implies

PX(i f S()) a P.(j r SCX)). This monotonicity property is a desirable

property for a selection rule, given the goal of selecting a subset

consisting of the large values of Xi. Many authors have shown that

their heuristically proposed selection rules are monotone. For example,

Santner (1975) proved the monotonicity of a large class of selection
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rules. In this paper we generalize the above notion of monotonicity

and present some other notions of monotonicity. Then we show in a

unified way that for many selection problems a large class of selec-

tion rules possess these monotonicity properties.

The monotonicity properties we consider are the following. Let

A a (a,, ... , ak} and B = (bI, ... , bk) denote two subsets of (1, ... , n)

with IAI = IBI = k, where 11 denotes subset size. Subset A is better

than B if, for some arrangements ai(),..., ai(k) and bJ(l),...,bj(k) of

the elements of A and B, Aar Xbr for every r = 1, ... , k. If

A is better than B, then each of the following inequalities would be

desirable for a selection rule:

P CA n S(x) Im) a P,(IB n S()J z m) for every m, -- U<*; (1.1)

[In words, PA(at least m of the elements of A are selected)> P 4(at least

m of the elements of B are selected).]

PX(A = S(Q)) Z PX(B = S(X)); (1.2)

PcAc n s(Q) I a) k P,(IBc n s()I I m) for every m,-, ! a < -. (1.3)

Some special cases may be of particular interest. By setting a - k in

(1.1) we obtain PA(A c S(X)) z P (D c S(P). Furthermore, if k a 1,

we obtain the classical monotonicity property of Gupta (196S). By setting

m - 0 in (1.3) we obtain P (A 2 S(Q)) a P X(B 2 S(D).

In Section 2 we present the notation we will use and the assumtions

concerning F(Z; A) and S(s) we will make. The main results, inequalities

-L7-.- ,-._
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(1.1), (1.2), and (1.3), are proved in Section 3. The extension of

these results to include additional parameters and rules based on

statistics other than ; is outlined in Section 4.

In a similar fashion, we can obtain dual results for the mono-

tonicity properties of ranking and selection rules designed to select

the smallest rather than the largest values of the parameter. We omit

the detailed statement of these dual results and of their proofs.

2. Notation and ass!ptions. Let w a (wl ..., vn) denote a per-

nmutation of (1, ..., n). For any F e Rn , let x 0 w denote (xl.'"'x

Let g(x; D be a function from R into R. We say that g is permutation

invariant if g(x 0 w; A " ) = g(E; ) for every x e n , every e £ ft

and every permutation 1.

Let Z and w" be two permutations such that

W (vi ... , Wit .., ..., wn) and

(2.1)
w A a (w i ll ...,Ow 1, ... . T i t ..., 0 wn) ,

where i-cj and wi  * w We say that w' is a simple transposition of

w; in symbols, w t w. Let v and y" be such that there exists a finite

0 1 k 0O;ti t .. t kmber of permutations, w 1l, ... , satisfying n w Mew'.

We say to is a transposition of w.. By extension of notation, we will

say AEw is a transposition of A% if X is a transposition of w and

1  "'" n

The concept of a decreasing in transposition function will play a

central role in our exposition. The function g(x; A) is decreasing in

traspoition (P}T) if



g(S; A) is permutation invariant, (2.2)

and

imply

g(Q, A 1) z g(F; A .21*

j Hollander, Proschan, and Sethuraman (1977) (IPS(1977)) present a do-

tailed investigation of DT functions and many examples. The DT pro-

perty is called arrangement increasing by Marshall and 01kmn (1979).

We assume that the observation vector X - (XI, -I. Xn) has a

density g(B; D) with respect to a measure o(O , where a satisfies

I~~da~j ~ * - ~d ) for each permutation w and Borel set A c Rn. We

assume that g is Ur. HPS(1977) list several discrete and continuous

densities which are DT. For example, if g(!; 1) a W n h(x; ) and

h is TP 2 then g is Ur. Eaton (1967), Hsu (1977), and Gupta and ?4iescke

(1982) have investigated selection problems involving a UT density.

our results differ from theirs in that they compared the operating

characteristics or risk functions of different selection rules, where-

as, inequalities (1.1), (1.2), and (1.3) compare different operating

characteristics of a single selection rule at a time.

A nonrandonized selection rule S(A) can be defined by specifying

its Irdividual selection probabilities, *,(A) %Qx),(V which are
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.((2.4)
.0 if 1 4~ S

We will make the following assumptions about S(x):

if *ti( - 1 and xj 2 x then #j( A) ; (2.5)

and

*: (a) * *i(O 0 1) for every a C R, every i c (1, .. , n1 (2.6)
i

and every permutation X.

Rules satisfying (2.5) have been called "natural" in some of the selec-

tion literature (for example, Eaton 1967). Gupta and tiescke (1982)

have shown that for problem involving exponential families, selection

rules satisfying (2.S) form an essentially complete class among all per-

mutation invariant rules for many loss functions. Both Eaton (1967)

and Gupta and Miescke (1982) allow randomization to break ties. The

permutation invariance assumption (2.6) is standard and reasonable in

light of the permutation invariance of the density g and measure a.

We have restricted attention to nonrandomized selection rules.

Typically, in the fixed subset size selection rules, ties are broken

at random. If F(x; ) is such that ties among the X 's occur with pro-

bability zero, then our results may apply to these fixed subset size

rules. but if ties occur with positive probability (for example, F(x; A

is a m:" -omial distribution), then our results are not directly appli-

cable to these randomized, fixed subset size rules. But our results are
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applicable to the random subset size rules for the oultinomial such

as those considered by Gupta and Nagel (1967) and Gupta and Huang

(1975), since the multinomial density is DT.

The following lemn will be used to prove the monotonicity results

in the next section.

LE1MA 2.1. If A - (al, ... , ak}c~l, ... , n) is better than

B - (blk ..., bk) c (1, ..., n) , then there exist vectors A' and
(Xa,..,x.. ) b,...,b)

All such that a) (A = (b)k, .,An, b) 1 k
n k

(n-k1*....,Xn), and c) A" is a transposition of A'.

PROOF. We will define Aland A' and then show they have the re-

quired characteristics. Let r = lAc n B1. Note that r = IA n BCJ,

k -r= IA n BI and n-k-r - JAC n BCJ. Let Al * (X, ..., Ankr) be

the elements of (: i e A€ n BC) in an arbitrary but fixed order and

let (A1  .. DAnkr) . A1. Let A2 a (AAkr)I.I ..., n) be the

elements of {i: i e AC n B) arranged so that Ank.Nl! ... 2' .k and

let (A'~ ... r. I A 3 Akl 4,r) ben:kl' " ' k.,-)  Let - "'" , -k~r

the elements of (A.: i e A n Bc ) arranged so that A' l ... nk
1n-k*l n;-k~r

and let (Xnk-rl, ..., A.k) - 3. Let -a (Xnkrl. ..., A') be

the elements of (Ai: i e A n B) arranged in an arbitrary but fixed

order and let (A .l , All) = 4. The two vectors aren-k~r~l' n

A'. (~~1 .zA, A A) and -- c (1.A3, A, A4)
C1arly,a) and b) are true by the definition of X' and 4". To

show that All is a transposition of A', it suffices to show that

.n-k~i k An-k-ri' i a 1, ..., r; for, if this is true then All can

be obtained from A' by the sequence of r simple transpositions which

switch kn-ki and n-kri, 1 1, .,., r.



To verify that n-k.i n-k-r' i 1 1, ... , r, fix i. Let

s JA n B n (Ij: . a Ak.i 1. At least s + r - i + I elements

of B are greater than or equal to A'-k-r+i because the coordinates

of A2 are in nondecreasing order. Since A is better than B, corres-

ponding to each of these there must be an element in A which is greater

than or equal to A'nk-r+i* The definition of s implies

JA n B' n(A.: jX X z kA ri} a r - i + 1. Since the elements of

X3 are in nondecreasing order, I' r. Inn-k~j n-k-r~i' * . .I
particular X i a A' as was to be shown.l

3. r4onotonictty properties. In this section we prove the mono-

tonicity properties (1.1), (1.2), and (1.3). Leam 3.1 will be used

in these proofs.

LEM4A 3.1. Let x £ Rn, I c (0, 1)n , and m e R. Suppose

"' *n' the individual selection probabilities of a selection

rule S, satisfy (2.S) and (2.6). Define

n
(1 if I

n

lo if I it *1(0 < m

and

n

h (1, !9 (3.2)

lo if I (I -i)*i(X) > mim 1
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Then hI and h2 are VT.

PROOF. We will prove the result for h1. The proof for h2 is

similar. By 5., page 724 of HPS(1977), it suffices to show that

h(L, A)•' ItiC") is DT.

The function h is permutation invariant since by (2.6), h( e v; a -)*

I *j(n.E) V . I (A) - i Ii *i(t) = h(j, ;) for every
Ti 'Ija

permutation X. To verify (2.3), suppose I, = ... -I1 0,

I In = 1, and x I ... : x . Then h(Q,) = r I s( ) " For
r I 1 scr

x >t w' defined by (2.1), (2.5) and (2.6) implies

z)(; C) J ~ ~ (1jz *( *t (4) Qs *(x

and

s( Q =# (s. w') for s a 1, ..., n, s i,j.

Thus, fori < j z r- 1 orr si < j, h(Q, x - V =h(l, , *

and for i t r - I < r ! j, h(I, x y w) k h(, x o w'). Therefore,

h is r.II

THEOREM 3.1. Suppose the density g(x; k) is DT. Suppose the

individual selection probabilities of the selection rule S satisfy

(2.5) and (2.6). Let A c (1, ... , n) and B c (1, ... , n}. If A is

better than B, then

P (JA n S(A)J k a) a P (IB n SUj)J a a) for every 3 e R. (3.3)

PROOF. Let hI be defined by (3.1). Then by the Couloition
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Theorem 3. of HPS(1977), HI1,  = f-hl(, X)g(;; 4)da( ) is a DT

function. For any C c (1, .. ,n}, define IC (c. I by

if i e C and IC 0 if i C. Then it follows that

h(IC ) c I if IC n S(A)J z m

0 if ICnSQ()I < m

Th a C
Tus P,(jC n S(DI a a) =H 1(I A)

Let Z'(X-) be the permutation such that w ( o wQ ) a (')
where A'(-) is defined by Lemma 2.1. Then ZA I = B  Too

= (0, ..., 0, 1, ..., 1), a vector of n - k zeros followed by k ones.

Since X" is a transposition of X' and H1 is DT, we obtain

P(A n S(A)J k m) - HI(A 1)

a HI(IA A A

HI(I --, A. -iI

aHIX * v-, A • i--) (3.4),

= Hl(I ,

P A(IB n S(xIz am). II

The conclusion of Theorem 3.1 can be restated as, "IA n S()J

is stochastically larger than IB n SCX)I." This implies other in-

equalities in addition to (3.3) such as EIA n S(Xl I EIB n S(Q).

THEOREM 3.2. Under the assumptions of Theorem 3.1,

P (IAC n S(Q)jI m ) a P~(IBc n S(X)j I m) for every m £ R. (3.S)

.... . .-----------.-
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PROOF. Let h2 be defined by (3.2). By the Composition

Theorem, H2(j, ) = fh2 (j, A)g(A; Ddo(F) is DT. But for de-

fined as in Theorem 3.1. H2 (1C, 1) = P( C c n S(Q) m). Thus,

arguing as in (3.4), we obtain (3.5). II

THEOREM 3.3. Under the assumptions of Theorem 3.1,

PICA = S(X)) D PA (B = S(x)). (3.6)

"ROOF. Let k = IAI - IBl. Let heQ, ) - h1 ( . E)h 2(!, !I).

where hi is defined in (3.1) with m = k and h2 is defined in (3.2)

with m = 0. By Theorem 3.6 of HPS(1977), h is a DT function. Thus

HQ, 4) (= hCI, xjg(x; )dv(x) is DT by the Composition Theorem.

Furthermore, for 1 defined as in Theorem 3.1, H(f, A) = PX(C = S(X)).

Thus, arguing as in (3.4), we obtain (3.6). I

4. Additional parameters and statistics. In many problems,

the distribution of the observations depends not only on 1, the para-

meter of interest, but also on another parameter y. In many problems

the selection rule depends not only on X but also on another statistic

X. In this section we present conditions in this more general frame-

work under which the monotonicity properties (1.1), (1.2), and (1.3)

hold.

As an example of this type of problem, consider the selection of

the largest normal mean. Suppose XI , ... , Xn are independent normal

means from normal populations. The mean of Xi is Ai and all the X

ii

have the same variance v. Suppose that Y is an estimate of v which
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is independent of , and such that i Y has a X2 distribution with

r degrees of freedom. Then Gupta (1956) proposed the following

selection rule to select a random size subset including the largest

i:

Include i in the selected subset

S(Q, X) if and only if

Xi z max X. - dR,

where d is a constant chosen by the experimenter.

Our assumptions will imply that this selection rule satisfies the

monotonicity properties (1.1), (1.2), and (1.3).

We as.-ume that the observation (1, X) has a density g(AX;X,2

with respect to a measure o() x p(y.) where a satisfies fAdu(j)=fAd (x 't)

for each permutation X and Borel set A c Rn . We assume that for each

fixed X c V, the sample space of X, and each fixed 2 c N, the set of

possible values of v, g(F, X; 1,, y) is a DT function of x and A.

Let 4iQ, X), ., n(X, X) denote the individual selection pro-

babilities of a nonrandomized selection rule S(X, 1). We assume that

for every , X) a if , 1 and xj Z xi then *j(x, X - 1. We

also assume that X c V. E £ Rn, i e (1, ... , n), and I a permutation

imply (E. V i Z, V).

ThEORE 4.1. Suppose the above assumptions concerning the dis-

tribution of (Q, 1) and the form of S(X, y1) hold. Let A c (1 ... , n)

and B c (1, ... , n). If A is better than B, then
3.
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P ,JIA n S(,flj 2) z (IAB n S(z,2l am) for every m E R, (4.1)

P , (AcnS(X,) If) 2P P fl S(X,Xl !5m) for every e £ R, (4.2)

and

P ,(A a ScQ, X) k P x,(B a SCQ, V. (4.3)

PROOF. We will outline the proof of (4.1). The proofs of (4.2)

and (4.3) are similar.

For every L e (0, 1", n ; Rn , and X Y, define

1 ifi1 1 XiiC ) : m

0 if I li~i(x, X) < m.
Jul

Arguing as in Leama 3.1, we can verify that for each fixed C V,

h is a DT function of L and x. Thus by the Composition Theorem,

H ,I(L. D) = fh( ,, 1, X)g(, X; 1, 2)do(X) is a DT function of -

and 4 for each fixed X e Y and y e N. Consequently, by Theorem 3.2

of HPS(1977), H (I, 11 Q JH (I, AJdV(X) is a Ur fumction of I and A

for each fixed y e N. But for IC defined as in Theorem 3.1, H (F, =

P (IC n S(x, vI k a). Thus, arguing as in (3.4), we obtain (4.1). If

As another example of the generality of this result, consider

the comparison with a standard problem presented by Gupta and Sobel

(19S8). Let XO, X1, ... 9 Xn denote independent sample amens from

normal populations. The mean of X is At' i 0, 1, ... , n. The

- . - -~ ............ *
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22
variance of X0 is I./ and the variance of Xi is a2/r, i = 1, ... , n.

The parameters 0f kI' """' A and a2 are unknown but mrand r are

known (sample sizes). Let S2 be independent of (XO, X1 , ... , X)

and such that vS2/a has a X distribution with v degrees of free-

dom. The goal is to select a subset of (1, ... , n) which contains

(i: Xi > k0). Gupta and Sobel (1958) proposed the following selec-

tion rule:

Include i in the selected subset S(X, ]D if and

only if

X 2 X0 -d4/

where d is a constant chosen by the experimenter.

With X = (X1, ... X) X * , ... , n). Y = xO, $2), and

•u (A0 'a 2), the assumptions of Theorem 4.1 are readily verified

for Gupta and Sobel's selection rule. These authors considered the

more general problem in which the r's (sample sizes) associated with

the various X Is are different. The Xi's must all have the same r

for the assumptions of Theorem 4.1 to be satisfied. To our knowledge,

monotonicity properties such as these have not previously been consi-

dered in the comparison with a standard problem. But they are as

desirable in this framework as in other formulations (Bechhofer, 19S4,

Gupta, 196S) of the selection problem.
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C C denotes the complement of C.) Mi P (JA n S(V) I m ) k P (1B n S(Q) at) for

every a c R, (ii) P A(A a (V) a P (B S(s)), and (tii) PiJAC n (I lm

a P( 1c n S (VI s m) for every ma R. These generalized monotonicity pr perties

are derived using a unified approach. The results apply to selection rul a proposed
under several formulations of the selection problem.




